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SUMMARY 

A numerical study of natural convection in a two-phase, two-component flow in a porous medium heated 
from below is presented. Interphase mass and energy transfer, latent heat and bouyancy effects are major 
physical features. This study extends earlier studies of natural convection based on single-phase, saturated 
porous medium models. The appearance of two-phase heat pipe zones in the flow has a marked effect on the 
fluid and heat flows as well as on the performance of the numerical methods. The numerical techniques for 
handling phase change, Jacobian construction and time step selection are discussed. 
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1. INTRODUCTION 

The heat transfer across a layer of fluid in a porous medium which is heated from below has been 
extensively studied using a model based on a single liquid phase saturating the porous medium. 
From a heat transfer point of view, this model exhibits two basic regimes: the conductive regime 
at low bottom heating, in which the heat is transferred primarily by conduction and the liquid's 
motion is absent or secondary; and the convective regime for higher bottom heating, in which the 
liquid flows in convection cells or irregular quasi-periodic flows which are the primary mech- 
anisms of heat transfer across the layer. The literature of this model is reviewed in Section 1.1 
below. 

The validity of the single-phase model becomes increasingly questionable with increasing 
bottom heating, since for real fluids the higher temperatures may exceed the saturation temper- 
ature of the liquid phase unless the layer is subjected to increasing pressure. In this paper we 
extend these studies by employing a more complex model for the fluid which consists of two 
chemical components, water and air, and two physical phases, liquid and vapour. The model 
simulates the flow of fluid and energy through both the water-saturated zone and the overlying 
unsaturated zone of a rock matrix uniformly heated from below. With the bottom temperature of 
the layer as the basic parameter of the study, the flow is studied dynamically, starting from a 
standard conductive state (properties varying with depth only). Although the extended model 
poses a significantly larger computation than its single-phase predecessor, the increased com- 
puting power provided by current developments in computational techniques (as discussed in 
Section 2) and in processors makes this model viable even for relatively inexpensive and 
commonly available workstations. 

For the range of bottom heating used in our study, this model exhibits three heat transfer 
regimes, which have been identified by Hardee and Nilson.' The first two of these, in order of 
increasing bottom heating, are the conductive and liquid phase convective regimes, in which the 
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saturated zone has the characteristics of the single-phase model discussed in the opening 
paragraph, modified in minor ways by the presence of the air. At higher bottom temperatures, 
however, the temperature locally in the flow field can rise to, and be limited by, the water 
saturation temperature at which the water component is partially evaporated and exists in a two- 
phase state. Such two-phase zones form locally in the liquid phase convection cells of the 
saturated zone and limit their role in heat transfer while introducing a new heat transfer 
mechanism, namely a cycle of evaporation, vapour convection and condensation. This regime is 
referred to as the two-phase convection regime. The role of phase change in the heat and mass 
transfer by a volatile fluid has been studied under the name of the heat pipe effect. A prominent 
feature of heat pipes is a counter-current flow between the two phases of one chemical 
component, i.e. water. The vapour phase rises due to buoyancy, while the liquid phase sinks past 
it due to gravity. Previous work on heat pipe effects appears to have concentrated on experi- 
mental and analytical studies of one-dimensional two-phase zones to predict transport rates and 
the lengths of the two-phase zones (see Section 1.2 below.) A major feature of this study is the 
demonstration of the formation of localized two-phase 'pockets' in the convection cells of the 
saturated zone, with general-two dimensional shapes. These pockets are two-dimensional heat 
pipes, and modelling a flow in which they develop requires a computational technique which can 
be applied uniformly and efficiently to both saturated and unsaturated zones. 

Section 2 of the paper is devoted to the mathematical model and the numerical solution 
strategies we have used to meet these challenges. The geometry and equations for the two-phase, 
two-component model are described first. The layer is confined to a box 60 m deep by 90 m wide 
and the rock matrix void is filled two-thirds with water and one-third with air. The top of the box 
is held at 20 "C and the evolution of the dynamic model to a steady state for bottom temperatures 
in the range 70- 150 "C has been computed. 

The equations involve eight state variables, with three evolutionary partial differential equa- 
tions and five algebraic equations. The flow bed is discretized into square cells and the equations 
are discretized in time by a fully implicit method and in space by a conservative finite volume 
scheme, as discussed further in Section 2.1. The resulting algebraic equations are solved in Section 
2.2 by the full Newton method using a preconditioned conjugate residual iteration to solve the 
linear systems of equations. Numerical differentiation is used to produce an effective approxima- 
tion to the Jacobian matrix for Newton's method. In Section 2.3 we discuss how the structure of 
the discretized conservation laws allows us to compute the Jacobian matrix very economically. 
This procedure also substantially simplifies the incorporation or modification of complex 
physical relationships for transport coefficients or the thermodynamics in the model. As a result, 
there is little reason for us to use simplifying assumptions such as the Boussinesq approximation 
in our computation. 

The primary variables are the three state variables that are advanced in time by solving the 
discretized conservation laws. While two of these are always the pressure and the temperature, the 
goal of having a uniform computational technique for the entire fluid is complicated by the fact 
that the third primary variable, for a given cell, depends on the liquid saturation condition of this 
cell. Accommodating phase changes at arbitrary locations in the flow field complicates the 
numerical procedure, basically because the non-linear model equations do not have a reliable 
linearization in the presence of extensive phase changes. Emphasis should be placed on 'changes' 
here, since it is not the presence of two phases in the flow that makes linearization difficult but the 
possibility of phase change at physically realizable nearby flows that reduces the reliability of 
linearizations as needed for Newton's method. These computational difficulties underlie the 
discussions of primary variable selection and switching in Section 2.4 and the time step selection 
strategy presented in Section 2.5, as well as the discussion of Section 4.1. 



TWO-PHASE MODEL OF NATURAL CONVECTION 657 

Useful summaries of the dynamical state of the flow are provided by the rates of heat transfer 
into the layer through the bottom, Qbol(t), and out through the top, Q,,,(t). These symbols are 
defined more precisely in Section 3. When the bottom heating is low enough that the layer 
remains in the conductive regime, Qbol( t )  and Q,,,( t)  approach each other monotonically. The 
development of convection cells in the liquid phase can be viewed as a dynamic instability of the 
conduction regime at  higher bottom heating. The onset of this instability is clearly marked in the 
profile of Qbl(t) by the start of a pulse, shown in Figure 4 of Section 3, as the layer takes in energy 
to drive the convection cell formation. The pulse in Qbol(t) peaks and then decays to the steady 
state where it coincides with Qtop(t). The physical mechanism of this pulse is explained in Section 
3.1. By contrast, the transition from the liquid phase convection regime to the two-phase 
convection regime is not reflected in these profiles. This is discussed in Section 3.2 and is 
apparently of a different character than the instability that marks the transition from conductive 
to convective regimes. 

Some concluding observations are made in Section 4; the problems of controlling the time step 
and our approach to it are discussed in Section 4.1, and in Section 4.2 the heat transfer 
characteristics of the extended model are described. 

1.1. Single-phase studies 

The heat transfer across a layer, heated from below, of a single liquid phase saturating a porous 
medium has been extensively studied and reported in the literature. The models employed usually 
incorporate the conservation of mass and of energy, Darcy’s law for fluid flux and the Boussinesq 
approximation for buoyancy. The model equations are the evolutionary partial differential 
equations for the streamfunction and for the temperature, and the flow is studied in an 
impermeable box with insulated side walls and isothermal top and bottom walls relative to 
gravity. 

After non-dimensionalizing, the temperature differential across the layer appears in the 
Rayleigh number parameter Ra of the temperature equation. Earlier studies of two-dimensional 
flows in sealed boxes of rectangular cross-section have been referenced and reviewed by 
Caltagirone,’ in the survey article by Combarnous and Bories3 and, with applications to 
geothermal systems, by Cheng.4 

The basic phenomenon of this literature for a horizontai layer is that as Ra increases past a 
critical Rayleigh number Ra(crit), solutions of the model equations corresponding to two- 
dimensional convection cells, or rolls, bifurcate from the simple conduction solution. The 
convection cells transfer heat across the layer more efficiently than conduction alone, and the 
ratio of the heat transferred via the convection solution to that transferred via conduction only is 
the Nusselt number. The above-referenced literature studies the critical Rayleigh number, the 
influence of box geometry on it, the stability of the convection cells and the corresponding heat 
transfer, summarized by graphs showing Nusselt number as a function of Rayleigh number. 

The ‘sealed box’ model assumption of an impermeable top and bottom for the box containing 
the flow is central to the value, and even existence, of a critical Rayleigh number Ra(crit), above 
which the conduction solution loses stability and convection cells form. The influence of the 
boundary conditions on Ra(crit) for this simple model has been discussed in an early paper by 
Nield.’ Using a linearized stability analysis of the conduction state (i.e. isothermal top and 
bottom), Nield reproduced the earlier result that for fixed temperature boundaries at the top and 
bottom which are rigid to fluid motion, Ra(crit)=4aZ. He further showed that if the top layer is 
relaxed to allow a specified heat flux, Ra (crit) is reduced to 27.1, and if it is further relaxed to also 
allow a constant-pressure upper surface, Ra(crit) is reduced to 9.87 (i.e. n’). 
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More recently, the stability of the convection cells under the perturbing effect of tilting the layer 
relative to gravity has been studied by Moya et ~ l . , ~  Sen et aL7 and Caltagirone and Bories.* This 
last reference analyses three-dimensional convection cells as well as two-dimensional rolls. 

The loss of stability of these cells through Hopf bifurcation to quasi-periodic solutions as Ra 
increases has also been studied by Caltagirone,' by Borkowska-Pawlak and Kordylewskig and, 
more recently, in terms of the 'cascading' of bifurcations for very large Rayleigh numbers by 
Kimura et al." 

Rao et al.' ' extended this line of study to a more complex geometry by studying cellular flows 
in a horizontal annulus. In a study directed towards modelling geophysical gas dynamics, 
Davidson" computed the stability of formation of a single convection cell in the vapour phase of 
a porous flow overlying a liquid pool with an isothermal surface. 

These references have in common that they are studies of the formation of cellular convect- 
ive flows in a single saturating phase under buoyant heating and that they employ the 
streamfunction-temperature pair of partial differential equations as the basic mathematical 
model. This pair of equations reflect linear, constant-coefficient material properties except for the 
non-linearity associated with the buoyant convection-coupling terms. 

More physical features are present in the multicomponent, single-phase model of Lai et ~ 1 . ' ~  
based on three transport equations for three model variables, i.e. pressure, temperature and 
concentration of a chemical species. The saturated zone flow dynamics is computed by the 
coupled pressure and temperature equations, and the transport of the passive chemical compon- 
ent is included. Operator splitting of diffusive and convective transport is used, which allows 
careful consideration of errors due to discretization of the convective transport terms. It also 
permits the implicit equation solving to be limited to the diffusive transport terms, which are 
basically linear. Among the numerical tests reported in this paper is a study of a thermal cell in a 
porous slab driven by side wall heating, for Rayleigh numbers in the range 25-200, which exhibits 
strong convection at the upper end of this range. 

1.2. Multiphase review 

Two departures from the relatively simple equations used for the models for the studies of 
Section 1.1 will be reviewed in this subsection: the inclusion of phase change for the fluid, which 
introduces additional variables and algebraic thermodynamic equations and constraints; and the 
inclusion of unsaturated flows, which introduces non-linear permeabilities as well as additional 
variables and equations. 

Two papers from 1977, by Sondergeld and Turcotte14 and Hardee and Nilson,' provide 
qualitative and experimental insights into some implications of phase change for the flow. In the 
first of these the authors report on experiments in which a water-saturated layer in a bed of sand 
was heated from below to form a two-phase zone. Their study reports the formation of convection 
cells in a saturated liquid zone, like those referred to in the above review of single-phase flows, 
above a hot two-phase zone. The paper observes that: 'The two phase region was of variable 
geometry and had a distinctly non-horizontal steam-water interface with the overlying water 
zone. Convective instabilities were initiated by the occurrence of the phase change'. The paper 
concludes with a discussion of applications to explaining geological formations. The question of 
the stability of a two-phase zone below a liquid-saturated zone which is raised by Sondergeld and 
Turcotte is also addressed by Schubert and Straus." The authors discuss configurations of 
geothermal fields, present a linearized stability analysis of two horizontal layers, the lower being a 
two-phase zone, and conclude that such layers can be stable for sufficiently small permeabilities. 

In a study motivated by modelling nuclear reactor accidents, Hardee and Nilson' qualitatively 
identify three heat transfer regimes closely connected with those discussed in this paper, and 
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derive algebraic relations for the heat transfer parameters based on macroscopic heat and mass 
balance arguments for a single convection cell with internal heating of the fluid. Although a major 
contribution of the paper is its reporting of experimental results, these are not closely related to 
this study since they are carried out in a cylindrical apparatus, with heat generation distributed in 
the flow field, and in a high-permeability medium. 

Experimental measurements of the characteristics of heat pipes and one-dimensional models 
for them are reported by Bau and TorranceI6 and Udell” based on a cylindrical apparatus. The 
former paper reports long-term fluctuations in the temperature profile in the two-phase zone 
underlying a liquid-saturated layer, suggesting that the two-phase zone may not have a stable 
steady state but may have a stable periodic or quasi-periodic state. The authors also point out 
that the overlying saturated layer can be viewed as a single-phase layer heated from below, as 
discussed in the previous subsection. However, permeable, constant-pressure boundary condi- 
tions are more appropriate than ‘sealed box’ impermeable boundaries for this context, and as 
mentioned in Section l .15 such a layer is unstable, i.e. develops convective solutions, for any 
temperature differential across it. 

The mathematical analyses of these heat pipe flows have been carried out using one- 
dimensional models for the counter-current flows of the two phases of a single saturating 
component (water), and analytical derivations of model properties. 

Two-dimensional mathematical models which are similar to those presented in Section 2 below 
have been used to study the evolution of the unsaturated porous flow field about a nuclear waste 
repository by Pollock’* and Tsang and P r u e ~ s . ’ ~  Two-phase, multicomponent models are used 
in the simulation of geothermic fields, where typically the dynamic effect of a well bore on a flow 
field is studied; see the survey article by Pruess” and its bibliography. 

We can identify and distinguish the role of this study in relation to those reviewed above by 
noting that we are studying the stability and heat transfer phenomena of the formation of 
convection cells under buoyant heating, which is the subject of the single-phase studies reviewed 
in Section 1.1. However, instead of the streamfunction-temperature pair of equations appropriate 
to the single-phase models used in those studies, we are using the extended equations for 
multiphase, multicomponent flows. That is, the primitive variable transport equations are solved 
in conjunction with the algebraic relations and constraints governing two chemical components 
and the thermodynamics of phase change, which allows a uniform treatment of saturated and 
unsaturated zones. These equations admit the phenomena of the modelling described in this 
subsection, in particular the formation of heat pipes. They do, however, pose numerical solution 
difficulties beyond those of the simpler equations of Section 1.1 and which are discussed in detail 
in the sequel. 

2. THE MATHEMATICAL MODEL 

The following glossary of symbols will be used to describe the mathematical model: 

saturation of phase m=l, g (liquid, gas) 
pressure (kPa) 
temperature (K) 
absolute permeability (m’) 
relative permeability of phase m 
viscosity of phase m (kPa day) 
internal energy of phase m (J mole-’) (R=rock) 
enthalpy of phase m (J mole-’) 
molar density of phase m (mole m-3) 
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4 porosity 
AH 

D, 
P m  

9 
d depth (m) 
YP 
XP 
These symbols can be divided into variables for which the evolution is to be computed by the 
model, and parameters, including possibly non-linear functions, which are to be specified for the 
model. The variables are S, ,  S , ,  X , ,  X , ,  Y,, Y,, P and T,  and the parameters and their specifica- 
tions are given in Appendix I. 

For the description of the conservation laws of the model, it is convenient to combine the 
mechanical driving forces of pressure and buoyancy for the liquid and gas phases into phase 
potentials. The gradients of these potentials are defined by 

composite heat conductivity (J m-' day-' K-' )  
gas phase diffusivity (m2 day-') 
mass density of phase m (kg m-3)  
acceleration due to gravity (m C2) 

mole fraction of component p in the gas phase 
mole fraction of component p in the liquid phase. 

V$I=VP-pl  gVd, V $ ,  = V P  - p ,  gVd. (1) 

We have assumed here that the capillary pressure PI - P ,  is small and consequently PI = P,  = P is 
a satisfactory modelling approximation. Following Forsyth' and using the phase potentials 
of (l), the basic conservation equations, based on the multiphase form of Darcy's law, can be 
written as follows: 

conservation of air 

conservation of water 

conservation of energy 

a 
- C4(S,Ml U ,  + S,M,U,)  +(1- 4)  U r M , ]  = V .  at 

In addition to these conservation laws, the equilibrium thermodynamics determines the following 
two relations: 

Ya = Za( P, T ) X a  9 Y w = Z , ( P ,  T ) X , .  ( 5 )  
The functional dependence of 2, and Z, on P and T is given in Appendix I. 
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unsaturated 

For each of the three physically meaningful phase states that the model fluid can take on, the 

the liquid-saturated state 

model variables must satisfy the corresponding equations and inequalities: 

s,= 1, S , = O ,  X,+X,= 1, Ya+ Yw< 1; (64  

S,+S,=l,  x a + x , = l ,  Ya+Yw=l, S , > O ,  S , > Q  (6b) 

s, = 0, S,= l ,  Ya+Yw=l, X,+X,<l.  (6c) 

the vapour-liquid mixed state 

the gas-saturated state 

It will be seen that (2)-(5) plus the appropriate version of (6) form a system of eight algebraic and 
partial differential equations for the eight evolutionary variables. Further details of the selection 
of variables for computing their evolution are given in Section 2.4. 

The model is posed for a rock matrix bed 90 m wide (chosen as the x-direction) by 60 m deep 
(chosen as the z-direction) with all properties and variables assumed to be constant in the 
horizontal y-direction. The initial configuration is illustrated in Figure 1, showing that the 
bottom approximately two-thirds are saturated with water (S, = 1.0) and the top third is at the 
residual unsaturated value (S, =0.1) The boundary conditions are chosen so that the saturated 
zone resembles closely the fluid of the single-phase saturated zone studies reviewed in Section 1.1 ,  
i.e. the domain of the flow is an impermeable box with insulated sides. The temperature at the top 
of the layer is maintained at a constant Ttop, taken to be 20 "C in this study, and the temperature 
at the bottom of the layer is a parameter of the study and is varied between 70 and 150 "C. For a 
steady state bottom temperature Tbot in excess of 142 "C, a dynamic bottom temperature was used 
which decayed exponentially from 142°C to Tbot with a time constant of 35 days, i.e. 

if Tbot < 142 "C, 
Tbot(t)=i TbOt 

Tbo t [ l -W( t ) ]+  142w(t) if Tbot>142"c, 

where 

w( t )  = exp (- t/35), 

with t measured in days. 

bot 
(90,-60) 

Figure 1. Extended model geometry 
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unso t uroted 

The choices of the cut-off temperature at 142°C and the time constant of 35 days in this 
dynamic boundary condition are pragmatic choices without particular physical significance. 
Basically, using the time step selection procedure described in Section 2.5, the model was able to 
start without using excessively small time steps for bottom temperatures up to about 142 "C, but 
beyond that the procedure selects increasingly small time steps, down to the size of hours, in its 
attempt to follow initial transient behaviour that is irrelevant to the desired steady state. The time 
constant of 35 days is much larger that these unduly small initial time steps, but small enough that 
the dynamic boundary condition has decayed away well before instability of interest in this study 
sets in. 

The initial pressure field is essentially the hydrostatic one, with P =  100 kPa being the 'air' 
pressure in the unsaturated layer. Because the study uses the sealed box model of the single-phase 
studies of Section 1.1, the pressure field of the steady state solution is a consequence of the initial 
conditions and is not determined a priori. To reduce the influence of this, we have included a 
relatively large portion of the overlying unsaturated zone, and as a result the steady state pressure 
in this zone varies from 100 to 105 kPa over the range of Tbt used. 

A schematic glimpse of the steady state fluid field for bottom heating in the two-phase 
convection regime is shown in Figure 2, in advance of the more detailed discussion of Section 3. In 
this figure, two pockets of mixed phase fluid (primarily liquid water and steam) appear, disrupting 
the horizontal separation of the vapour and liquid phases shown in Figure 1 that characterizes 
the flow regimes of lower bottom heating. 

2.1. Discretization of the model equations 

Each of the three conservation laws equates the time rate of change of the density of a 
conserved quantity to the sum of divergences of fluxes of that quantity driven by gradients in 
some or all of phase potentials, gas phase mole fractions or temperature. This form is reflected in a 
corresponding form for the discretized equations, which are formed by using standard conserva- 
tive finite differencing based on square control volumes and totally implicit time discretization. A 
detailed description of the finite difference equations may be found in Reference 21, but the 
general form can be explained as follows. We will use superscript N to denote the Nth tihe level of 

Figure 2. Schematic view of saturation zones for steady state, bottom temperature 150°C (see Figure 13 for quantitative 
details) 
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the discretization and subscript i to denote the ith mesh cell. We will use A? to denote the amount 
of one of the three conserved quantities considered to be constant in cell i at time N ,  e.g. for the 
conservation of water, 

where Vol( i )  is the volume of cell i .  The discretized conservation laws then have the form 

In (7), qi is the set of four indices for the four neighbouring cells to cell i ,  and the terms in the 
summation represent the rate at which A flows from cell j into cell i as driven by the quantities 
differenced between cell j and cell i. We will refer to these summation terms as the discrete fluxes 
of A, e.g. QE+'(A)($tT1--$tll) is the discrete flux of A from cellj to cell i due to the differences 
in liquid phase potential between these cells. The coefficients Q, R, S, U and V, when present, 
combine the non-linearities of the transport coefficients involving the state variables in cells i 
and j with geometric factors from these cells. The designation (A)  only indicates that the trans- 
port coefficient is associated with the conserved quantity A; it is not intended to indicate a 
direct functional dependence on A as a variable. The transport coefficients in Q(A) and 
R ( A )  are upstream-weighted with the upstream direction determined by the liquid and gas phase 
potentials respectively. For the other coefficients, harmonic averaging is used. Not all of these 
coefficients are present in each discrete equation, e.g. for the conservation of water, S:' (A)  = 0 
and I / $ + ' ( A ) = O .  

2.2. Soloing the implicit equations 

For the time-stepping process we assume that the eight model variables are known for each cell 
at the Nth time level and that we have a provisional time step At to the next time level. If the time 
step yields a convergent iteration (see Section 2.5), we can compute the eight variables at the 
(N + 1)th time level by advancing three of the variables using the discrete conservation laws and 
then computing the remaining five variables from the algebraic equations (5 )  and (6). The five 
latter variables are referred to as secondary variables and the other three as primary variables; 
pressure and temperature are always primary variables, but the third depends on the phase state 
as described in Section 2.4 below. Computing the next provisional time step is also a part of each 
time step as discussed in Section 2.5. 

The running times of these simulations are crucially dependent on the solution strategy used 
for solving the non-linear equations of the discretized conservation laws. These strategies usually 
involve selecting a linearization technique (outer iteration) and a method for solving the resulting 
linear equations. Our strategy has been to use the full Newton method for the outer iteration with 
the incomplete factorization preconditioning plus the ORTHOMIN acceleration version of the 
preconditioned conjugate residual iteration for the linear equations.22. 23 The reliability of 
convergence and enhanced time step size provided by Newton's method plus the efficiency of 
ORTHOMIN make this combination attractive. 

Crucial to our use of the full Newton method is the capability of efficient numerical differenti- 
ation for approximating the Jacobian matrix of the non-linear system. For the complex exact 
expressions and empirical dependences of the non-linear transport coefficients and thermo- 
dynamic relationships in this multiphase model, the manual evaluation of the analytic derivatives 
for the Jacobian matrix is a large and error-prone task. The numerical evaluation of the resulting 
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analytic expressions is expensive in computing time and gives rise to complicated programming 
expressions which are disincentives to change or experiment with the physical model. We have 
found that numerical differentiation produces effective approximations to the Jacobian matrix for 
Newton's method with code that only evaluates the terms in the equations themselves, not the 
derivatives. This enables us to use a full physical model with little additional effort. 

In our monitoring of the performance of this strategy we found that the time required for 
constructing the linear equations and the time required to solve them were roughly equal. 

2.3. EfJicient computation of the numerical Jacobian 

The special form of the discrete conservation laws permits an elementary reduction in the 
amount of computation necessary to form their Jacobian numerically. The basic principle of this 
reduction can be explained with less technical and notational complication if we illustrate the 
technique for the case of a single primary variable and a single conservation law. 

Let ui stand for the value of the primary variable in cell i and let u denote the M-vector of 
primary variables for M cells. Let Ai( u )  be the amount of the conserved quantity in cell i and let 
&(u), j € q i ,  be the discrete flux of A from cell j into cell i .  

We assume that A,(u)  depends only on ui; we assume thatfii(u) depends only on ui and uj and 
that this dependence is such that 

fji(u)= -Xj(u)* (8) 
These assumptions are met by the finite differences used to construct the discrete form (7) of the 
conservation laws (2)-(4). Our example conservation law leads us to seek the solution u of a 
system of M equations of the form 

g(u)=O, (9) 
where 

gi(u)=Ai(u)-Ai(uN)-At fi i(u),  i =  1 , .  . . , M ,  
jsrli 

and uN is the M-vector of known primary variable values at the current time t,. To solve (9) by 
Newton's method we require the Jacobian matrix J for g, i.e. 

Jik(u)=i?gi(u)/duk, l < i < M ,  l < k < M .  ( 1 1 )  
For Newton's method the (n+ 1)th iterate, u("+') is computed from the current iterate u(") by 
solving the correction equation 

J (  u("))c = - g (14'")) (12) 

(13) 

and setting 
u(n+ 1) - (n) - u  +c. 

To numerically approximate the entries of J we use the differencing interval fl in the kth co- 
ordinate direction ek, i.e. /3 is a scalar and ek is the unit M-vector with all components zero except 
the kth. Thus 

eki=O, l < i < M ,  i # k ;  ekk= 1 .  (14) 

Then 
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for 

s k ( B ) A i ( u ) = [ A i ( u + B e k ) - A i ( u ) l / B ,  

6 k (  fl)fji(u)=[fii(u+ Bek)-fii(u)l/8. 
The entries in the kth column of J are agi(u)/auk for i =  1, . . . , M and we use the approximate 
values on the right side of (15) for them. 

Now, 

6kAi(u)=O unless i = k  (16) 
and 

6 k f i i ( u ) = o  unless i=k or j = k  and jfzqi. (17) 

If i = k, then the diagonal entry of J is 

If j = k and j E qi ,  then there is an off-diagonal entry in the ith row and kth column of J, 

Note, however, that the two discrete flux values in the right-hand approximate expression for 
agi (  u)/auk in (19) have already appeared as summands in the summation j E qk in the approximate 
expression for dgk(u)/duk in (18). If the evaluation of gk(u +Bek), k =  1, . . . , M, in (10) is regarded 
as M function evaluations, then it follows that the entire numerical Jacobian can be constructed 
in 2M function evaluations. (This is independent of the number of dimensions!) Note that even if 
analytic derivatives are used, M function evaluations are required to calculate the residual for 
Newton's iteration. In the case of P primary variables and P conservations laws, this technique 
requires only (P + l )M function evaluations per Newton iteration. 

2.4. Changes of phase, changes of primary variables and Newton's method 

As indicated in Section 2.2, two of the primary variables for each mesh cell are the pressure P 
and the temperature T, but the third depends on the phase state of the cell as per (6a+). For a cell 
in the liquid-saturated state, X, is used as the third primary variable, and for a cell in the mixed 
phase state, S ,  is used.24 

From each Newton iteration a new set of values for the primary variables in each cell is 
computed. These may, however, not be physically permissible values, since they may violate the 
inequality constraints required in (6) for that state. It is the role of these constraints to signal 
changes of phase and corresponding changes of primary variables. Figure 3 shows these 
transitions for the two states that occur in these computations.* For the switch from the liquid- 
saturated state to the mixed state, Y, is reset to 1 - Y,, and in the reverse switch, s, is reset to 
unity. 

The effect of a switch of primary variables is to change the system of equations to which 
Newton's method is being applied. This can happen repeatedly in the iterations for one time step, 

* If the cell were in the gas-saturated state (S, =O), then Y. would be selected as the third primary variable; however, in the 
computations reported here, this state does not occur. 



666 P. A. FORSYTH AND R. B. SIMPSON 

Figure 3. Transition rules for phase change 

particularly when the pressure and temperature fields are causing dynamic changes of phase. In 
this circumstance we do not attain the rapid, quadratic convergence of Newton’s method; indeed, 
the time step must often be reduced to get convergence at all. An obvious alternative switching 
strategy is to defer the switch until after a time step is completed. However, because a large 
number of cells may switch in a given time step, this strategy seems to perform poorly compared 
to allowing switches after every Newton iteration. Deferring the switch until the end of a time step 
can result in a large number of cells being in thermodynamically inconsistent states, 
which can result in a highly unstable situation requiring very small time steps. (See, however, 
Reference 25.) 

The change of phase state of a cell from liquid-saturated (S, = 1) to mixed (0 < S ,  < 1) can happen 
in several ways. The liquid phase fluxes of the discrete versions of (2)-(4) may result in a net exit of 
the liquid into neighbouring cells, leaving a previously saturated cell unsaturated. For example, if 
a saturated cell is above an unsaturated cell with respect to gravity, the liquid will seep from the 
upper cell to the lower (unless there is some overriding counter-flux). Alternatively, the temper- 
ature in a cell may rise to the saturation temperature for the liquid at the pressure in the cell so 
that some of the liquid is evaporated into the gaseous phase. As indicated in the previous 
subsection, computationally this can be recognized when the temperature and pressure in a 
liquid-saturated cell result in Y,+ Y,> 1, which is equivalent to 

z,x,+z,x,> 1, (20) 

where 2, and Z, are the equilibrium ratios defined in Appendix I. 
In the flows of our computations, X, is very small, so that to a good approximation X, = 1 and 

the saturation temperature-pressure relation reflected in (20) can be approximated by Z, = 1. 
Our discussion is complicated by the fact that two conventional but different uses for the term 
‘saturation’ are required: ‘saturation’ in the porous medium sense and ‘saturation’ referring to the 
pressure-temperature condition at which water evaporates. In the hope of reducing possible 
confusion, we will refer to the temperature above which, at a given pressure, water exists in both 
vapour and liquid phases as the bubble temperature (for the given pressure) and we will designate 
it Tbub. From Z,= 1, using the formula for 2, of Appendix I, we conclude that 

Tbub = - 30.0 + ( P  x 108/0.877)”4.76 (“C). (21) 

At this temperature, increases in energy in the cell are diverted from raising the temperature of the 
liquid (increasing its internal energy) to changing its phase, i.e. contributing to the gas phase 
internal energy in the form of the latent heat of evaporation. Hence the temperature is ‘capped’ at 
Tbub with regard to further injections of energy, at least until some of the assumptions of (21) are 
violated. This effect will be seen in the temperature distributions of the two-phase convective flow 
regime of Section 3. 
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2.5. Time step size selection 

The time-stepping procedure can be viewed as attempting to take a time step with a provisional 
time step, using Newton’s method to  solve the implicit equations. If Newton’s method converges, 
the provisional time step is accepted and the time variable and solution are updated appropri- 
ately. If Newton’s iteration fails to converge, the provisional time step is rejected. In either case 
a new provisional time step is required, which is computed from the previous Newton iteration 
results, either to repeat the attempt at the current time level or to attempt a step at the newly 
advanced time level. 

The calculation of the new provisional step size is controlled by a fairly complicated set of 
parameters. For each variable, two parameters are used: the target change parameter, which 
specifies the desired change in the associated variable per time step; and the convergence 
tolerance parameter, which is the criterion for convergence of the Newton iteration for the 
associated variable. A further parameter is the maximum number of iterations allowed, i.e. the 
Newton iteration is deemed to have converged if the convergence criterion for each variable is 
met in the specified maximum number of iterations. 

If the iteration does not converge, the new provisional step size is a reduction (typically half) of 
the current rejected step size. If the Newton iteration converges, then for each variable the ratio of 
the target change parameter to the Newton correction in that variable is computed. The 
minimum of these ratios is used to multiply the current accepted step size to give the new 
provisional step size. The intention then is to control the step size so that the Newton corrections 
hit, or are less than, the target change parameters. An analysis of the error control implications of 
this kind of strategy is given in Reference 26. 

3. FLOW REGIMES 

For each value of Tbot the flow develops from the common initial state described in the previous 
section into a dynamic flow/energy transport pattern and ultimately settles into a steady state 
that is characteristic of Tbot. We can identify three basic flow regimes for these flow evolutions: 

(i) the conduction regime, in which the dominant heat transfer mechanism is conduction 
through the liquid phase and rock matrix and the fluid properties vary only with the depth 
co-ordinate z 

(ii) the single-phase convection regime, in which convection cells form in the liquid of the 
saturated zone and provide significant heat transfer 

(iii) the two-phase convection regime, in which two-phase zones of water in the liquid and 
gaseous phases appear in the saturated layer’s convection cells. 

Details of these regimes are discussed in the subsections of this section, but we can summarize 
their relationships as follows. The model is initiated in the conductive regime. If Tbot is sufficiently 
small, the flow remains in this regime throughout its evolution, the fluid properties depending 
only on the depth co-ordinate z and relaxing monotonically to their equilibrium values. For 
larger values of Tbot the conductive regime is unstable and the flow develops variations in the 
x-direction which evolve into convection cells. This instability develops earlier and is more 
pronounced as Tbot is increased. As long as the temperatures in the liquid-saturated zone do not 
exceed the bubble temperature, as discussed in Section 2.4, the flow remains in this second flow 
regime and exhibits the basic phenomena of the single-phase saturated liquid models reviewed in 
Section 1.1. 
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For higher values of TboI the flow starts in the unstable conductive regime and soon starts 
evolving into the single-phase convection regime. However, before the convection cells are fully 
developed, the temperature in the hotter portions of the flow exceeds the local bubble temper- 
ature and a two-phase zone is initiated. In this zone the temperature holds at the bubble 
temperature, limiting the development of the convection cell. These two-phase zones expand and 
settle into a steady state, coexisting with the liquid phase convection cells and forming partial heat 
pipes. They are characteristic of the third flow regime, which is not exhibited by the simpler single- 
phase models. 

If the heat flux ( J  m-2 day-') is integrated in the x-direction across the bottom of the (two- 
dimensional) box, we obtain a global heat transfer rate Qboc(t) (J m-l day-') that characterizes 
the rate of uptake of heat at time t by the bed from its isothermal base, per metre in the y-direction 
(the horizontal direction in which the properties are all assumed uniform.) Similarly, integrating 
the heat flux across the top of the box, we obtain the heat transfer rate Qtop( t)  that characterizes 
the rate of delivery of heat at time t by the bed to its isothermal top. 

If the dynamic state of the box approaches a steady state as t+m, then both Qb1(t) and QIoP(t) 
approach the steady state heat transfer rate Q( TboI), which we designate as depending on the 
parameter of our study, Tb,,. Four histories of Qbot(t) and QIop(t) are shown in Figure 4 for 
TboI = 80, 100, 120 and 140 "C. For each value of Tbot, Qbot(t) is the upper solid curve and Qtop( t )  
is the lower dashed curve. As t approaches 200 years, the upper and lower curves approach 
each other at a limiting value which defines Q(TboI) for each case. In Figure 17 of Section 4 
a graph of Q( T ~ ~ )  versus Tbot is given. 

There is, of course, a basic difficulty in identifying whether or not a numerical computation of 
dynamic behaviour has converged to a steady state. In this study we have used inspection of these 
profiles to make this identification. 

In the studies reviewed in Section 1.1 of convection in a saturated zone, the Rayleigh number is 
used as a basic parameter of study that summarizes the relative importance of buoyancy forces to 
viscous forces in the fluid. When two phases of the fluid are present in the model, the Rayleigh 
number is less useful in characterizing the fluid, since the buoyancies and viscosities of the liquid 
and vapour phases of the liquid are significantly different and the transport is strongly affected by 
the phase change between them. Moreover, the Rayleigh number does not characterize the fluid, 
specifically the fraction of the fluid that is in the vapour phase, since the Rayleigh number depends 
on the temperature difference across the layer but the vapour fraction depends on the absolute 
temperature and the pressure locally. A less fundamental difficulty with using the Rayleigh 
number to characterize the saturated zone alone, in the liquid convection regime of our study, is 
that the upper boundary of the liquid-saturated zone does not have a constant temperature, 
unlike the studies of saturated zone convection in Section 1.1. 

For these reasons we have not tried to use the Rayleigh number as a basic parameter of the 
study but have selected the bottom temperature for this purpose. To facilitate comparisons, 
however, a further discussion of the Rayleigh number and the numerical values of the combined 
physical and geometric data that bear on it for our study is provided in Appendix 11. 

3.1. Formation of convection cells 

For the three higher values of T,, the profiles of QboI(t) in Figure 4 each show a pulse that is 
earlier and steeper with increasing Tbot. If we examine the temperature distributions during these 
episodes, we can see that the pulses are associated with the formation of convection cells. Figures 
5-8 show the temperature distributions for Tb1= 120°C for times 30, 42, 57 and 200 years 
respectively. Figure 5 shows the temperature essentially independent of x and that the heat is 
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Figure 4. Heat transfer histories 

being transferred essentially by conduction. However, the initiation of two 'peaks' and two 
'valleys' in the lower portion of the bed is apparent in the temperature distribution at 42 years in 
Figure 6, and these are highly developed by 57 years, as shown in Figure 7. These peaks of the 
temperature profile correspond to regions where the hot liquid water is rising from the bottom of 
the box, and the valleys correspond to regions where the water cooled near the interface with the 
unsaturated zone is sinking. The peaks and valleys of the temperature profiles internal to the flow 
field each mark the vertical boundary between two adjacent convection cells of opposite 
circulation pattern. Since the vertical walls of the box are impermeable, the boundaries at x = 0 
and x = 90 m each form the boundary of a convection cell. In Figure 7 (and also Figure 8) it can be 
seen that three cells are present; the boundary at x=O is a region of upwelling of heated water, 
and the boundary at x = 90 m is a region of sinking of water cooled in the upper region near the 
surface of the saturated zone. This can be contrasted with the temperature profile of Figure 13(a) 
for Tbt= 150°C. Although the profile is clearly influenced by the vapour phase, two interior 
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Figure 5. Temperature at 30 years, bottom temperature Figure 6. Temperature at 42 years, bottom temperature 
120°C 120 "C 

Figure 7. Temperature at 57 years, bottom temperature Figure 8. Temperature at 200 years, bottom temperature 
120°C 120°C 

peaks are clearly present, indicating four convection cells, with cooler water sinking at  both 
boundaries of the box. 

Figure 8 shows the steady state temperature profile. Comparison with Figure 7 (the 57 year 
profile) shows that the temperature valleys of the steady state are higher, as are the peaks, i.e. the 
temperatures in the convection cells are higher. This difference reflects the convection cell 
formation mechanisms which explain the pulse in Qbo,( t )  and the subsequent rise in Qtop( t )  that 
appear in Figure 4. The comparison of these temperature profiles can be made in more detail by 
inspecting the contour plot of Figure 9. In this plot the dashed contours show the temperatures at 
57 years and the solid contours show the temperatures at 200 years. The temperatures at 57 years, 
which is approximately the peak of the pulse, are lower than the steady state temperatures in the 
cooler regions of sinking liquid, resulting in stronger temperature gradients at the bottom of the 
layer (e.g. compare the 90°C contour in both cases.) This results in larger heat transfer rates 
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Figure 9. Temperature contours, bottom temperature 120°C ---, at 57 years; -, at 200 years 

through and near the bottom of the layer, resulting in large Qlop(t). At this stage the convection 
has not yet warmed the upper section of the saturated zone and the dashed contours are lower 
than their solid counterparts of the steady state profile. Hence Qtop(t) remains relatively low. The 
convection subsequently warms the upper parts of the saturated zone, pushing a major portion of 
the temperature gradient into the overlying unsaturated zone. In these latter stages the water is 
less cooled in the upper regions of the saturated zone and sinks less vigorously. The temperature 
contours in the lower part of the layer gradually space apart, reducing Qbo,( t ) ,  but crowd closer 
together in the unsaturated zone at  the top of the layer, raising QIop(t) until equilibrium is 
attained. These mechanisms are reflected in the decreasing and increasing segments of the profiles 
of Qbol( t )  and Qlop( t )  respectively for t > 60 years in Figure 4. 

3.2. The conduction regime 

Unlike the three profiles for Qbot(t) and QtOp(t) for Tho,= 100, 200 and 140 "C, the profiles of 
these heat transfer rates for Tbot = 80 "C in Figure 4 show no pulse for 0 d t d 200 years but 
monotonically drop and rise respectively to their limiting value. There is of course no guarantee 
that a pulse marking the formation of convection cells does not occur for t > 200 years. Indeed, the 
temperature distribution for Tbol = 80 "C at constant depth shows a small but regular variation 
with x, with a maximum total variation of 0 5  "C on the line of depth 40 m. Hence it seems likely 
that weak convection cells are present or forming. Nevertheless, this effect is so small that it seems 
appropriate to classify this flow as being in the conduction regime for heat transfer purposes. The 
same is true for TboI = 85 "C; however, for Tbot = 90 "C a weak but clearly defined pulse appears in 
the profile of Qbot(t), which starts its rise at t=  110 years and peaks at 180 years. The 
corresponding temperature distribution shows a single internal peak temperature, i.e. a pair of 
convection cells are formed. 

Integration of the dynamic equations is an inefficient way to determine the bifurcation 
characteristics of the steady state, and it is not clear from these calculations whether there is a 
critical value of TboI(crit) such that purely conduction solutions exist for the steady state version 
of this model when TboI < TboI(crit) but convection cells exist for TboI > Tbot(crit). Bifiircation and 
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path continuation t e c h n i q ~ e s ~ ' . ~ ~  are designed for this purpose. We can, however, compute 
Rayleigh numbers for the single-phase (liquid-saturated) layer for Tht= 80 and 85 "C, which are 
bottom temperatures close to that at which convection cells become computationally significant, 
since the temperature is essentially constant at the surface of the saturated zone. These Rayleigh 
numbers can then be compared with the critical Rayleigh numbers of the single-phase models 
reviewed in Section 1.1. The single-phase layer is 37 m wide and has upper temperatures of 441 
and 48.0 "C for Tbol = 80 and 85 "C respectively. On the basis of the definition of Rayleigh number 
given in Appendix 11, the corresponding Rayleigh numbers are 18 and 183 respectively. If the 
critical Rayleigh number is viewed as an approximate indicator of when convection effects start 
to become significant, then these values can be viewed as being reasonably consistent with the 
values obtained by Nield,' discussed in Section 1.1, which lie in the range 9-27 for the simpler 
single-phase model and various boundary conditions which could be applied to this layer. 

3.3. Appearance of the vapour phase 

The vapour phase appears in the flow locally where the temperature exceeds the liquid bubble 
temperature Tbub (i.e. the 'boiling' point), which has been discussed in Section 2.5 and is repeated 
here: 

Tbub(P)=  -300 +(P x 108/0*877)"4'76 ("(3 (22) 
The primary variation in pressure is the hydrostatic variation with depth. Hence Tbub is 
significantly depth-dependent. In our modelling the liquid saturation zone starts at a depth of 
23 m. The pressure in the overlying unsaturated zone, which we denote by Po,  is slightly variable 
due to the sealed box conditions, varying from 101 to 105 kPa. Consequently, the hydrostatic 
pressure in kPa is 

P,(z)=p,g(-z-23)+Po for z <  -23. (23) 
For Po = 100 the variation of bubble temperature with depth due to the hydrostatic pressure 
profile of (23) is given in Table I. 

Figures 10-12 show several stages in the development of convection cells and two-phase zones 
for Tho, = 150 "C; part (a) of each figure shows the temperature distribution and part (b) shows the 
liquid saturation S , .  In Figure 10 the early emergence of convection cells can be seen. In this case 
four cells are forming, showing two internal upwelling zones or temperature peaks that mark the 
common boundary of adjacent cells of opposing rotation. In this dynamically unstable evolution 
the peaks are not identical, however, with the one in the foreground, at x = 65 m, being hotter. The 
temperatures in the latter peak reach the local bubble temperature at depths of between 30 and 
40 m and a two-phase zone forms within the saturated liquid zone as can be seen in Figure lqb). 

In Figure 1 1, for t = 28.8 years, the cells are more fully developed. The liquid saturation profile 
in Figure 1 l(b) shows that the two-phase zone which was initiated in Figure 10 has expanded and 

Table I. Variation of hydrostatic pressure and Tbub with 
depth 

30 197 
40 293 
50 390 
60 486 

119 
133 
143 
151 
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Figure lqa).  Temperature at  24.2 years, bottom temper- 
ature 150°C 

Figure 1 l(a). Temperature at 28.8 years, bottom temper- 
ature 150°C 

Figure lqb). Water saturation at 24.2 years, bottom 
temperature 150 "C 

Figure ll(b). Water saturation at 28.8 years, bottom 
temperature 150 "C 

reached the surface of the saturated liquid zone, and the temperatures in the upwelling region 
centred on x =  15 m have reached the local bubble temperatures so that a second internal two- 
phase zone has appeared. The larger two-phase zone in Figure 1 l(b) which has burst through the 
surface of the liquid-saturated region shows a small region of condensation at its top in the 
overlying unsaturated region. This zone is in the process of forming a heat pipe, evaporating the 
liquid in its lower, warmer portion and condensing it at the cooler, higher portion. The 
temperature distribution in this two-phase zone is being constrained by the bubble temperature. 
In its lower portion the temperature peak is noticeably flattened, since the heat is being used to 
evaporate the liquid. In the upper portion a small, flat ledge of higher temperatures can be seen in 
the condensing zone, where the latent heat of condensation is being released. This can also be seen 
in the contour plot of Figure 12, which shows the temperature distribution at t = 28.8 years with 
solid contours and the local bubble temperature with dashed lines. In the upwelling zone at 
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Figure 12. Temperature contours at 28.8 years, bottom temperature 150°C ---, bubble temperature; -, actual 
temperature 

x=65 m the constraining of the temperature to the local bubble temperature in the two-phase 
zone is very clear. In the other upwelling zone at x=  15 m it can be seen that the temperature 
contours for T= 120 and 130 "C coincide with the local bubble temperature contours of the same 
values at depths of about 30-40m, indicating the formation of the second two-phase zone 
apparent in Figure 1 l(b). However, in the rest of that region the temperature lies below the local 
bubble temperatures. 

The distributions at 200 years shown in Figure 13 are considered to be the steady state 
distributions; the two upwelling regions are more closely equal. In each of them a two-phase 
convection zone has formed which evaporates the liquid in its lower portion in the liquid- 
saturated zone condenses the vapour in its upper portion in the unsaturated zone. The con- 
straining of the temperature by T b u b  in both of these zones is clear in Figure 13(a) and in the 
contour plot of Figure 14, which shows the steady state temperatures as solid contours and 
the local bubble temperatures as dashed lines. 

The asymmetries of Figures 11 and 12 seem to be primarily due to the different rates at which 
the corresponding pairs of convection cells develop dynamically under these particular initial 
conditions, perturbations due to terminations of Newton's method, and round-off errors. Figures 
13 and 14 also show minor asymmetries between the left and right pairs of convection cells, but 
these are not due to transient effects since the dynamic changes have essentially died away before 
150 years, as shown in Figure 4. The usual mathematical argument for the symmetry of the 
equilibrium state does not apply here, since it requires uniqueness of the solution which is not 
present in the instability phenomena for non-linear equations. It is plausible then that there are 
two different solutions with four convection cells, of which we have computed one. 

4. SOME CONCLUSIONS 

The two-phase, two-component model appears to be an interesting, computationally viable 
extension of the single-phase models for heat and fluid transport in a bottom-heated layer of 
water in a porous medium. It reproduces the phenomena of the simpler model in the appropriate 
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Figure 13(a). Temperature at 200 years, bottom temper- Figure 13(b). Water saturation at 200 years, bottom 
ature 150°C temperature 150 "C 
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Figure 14. Temperature contours at 200 years, bottom temperature 150°C ---, bubble temperature; -, actual 
temperature 

heating ranges, and incorporates the phase changes and corresponding alternative heat transport 
for higher bottom heating. The heat transfer characteristics of the extended model's runs are 
described in Section 4.2. 

We have demonstrated that the two-dimensional extended model on a relatively small mesh, 
using current numerical techniques, poses a computation that is within the scope of relatively 
common and inexpensive workstations. The cells of the mesh for solving the extended model's 
equations were 3 m  square; the mesh was 20 cells deep by 30 cells wide. Although several 
variations in cell size and mesh configuration were checked, no appreciable variation in 
phenomena was observed and the discretization errors are estimated to be about 5% or less. The 
running times for the simulations depended heavily on the flow regime. Using a SUN 3/160 with a 
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WEITEK floating point accelerator (running at about 0.2 Mflops), simulations for the conduc- 
tion regime took typically 1 h, while simulations for the two-phase convective zone took up to 
20 h. Significant further efficiencies could probably be realized by improvements in time step 
control, particularly in two-phase flows. Because of the complexity of the automatic step size 
control algorithm for this model, particularly in the presence of changes of state, we interactively 
modified the time step size control parameters as described in the next subsection. 

4.1. Time step size selection 

Since each time step involves substantial computations, the appropriate choice of time step size 
is an important efficiency consideration. This choice is complicated, however, by the dependence 
of the appropriate time step size on the model's behaviour, i.e. on the current heat transfer regime. 
In Figure 15 a profile of step size variation for subsequent time steps is shown for TbOt = 150 "C for 
the step size strategy of Section 2.5. In the initial portion of the profile, while the solution is 
primarily in the conductive regime, the step size grows rapidly if the target change parameters are 
large enough. As the convection cells start to form and the flow enters the single-phase convection 
regime, the appropriate step size drops to allow the numerical solution to follow the developing 
flow. At this stage the most relevant target change parameter is associated with the temperature. 
If the target change parameters are too high, i.e. are at values appropriate for the conductive 
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Figure 15. Typical time step size profile for a two-phase problem 
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regime, then an oscillation in the selected step size will occur, since the projected step size will 
invariably be too large for the convergence of Newton’s iteration. Such oscillations are quite 
inefficient, since the non-convergent computation with the larger step size is discarded. 

If the flow now enters the two-phase convection regime as a result of vaporizing in local ‘hot 
spots’ in the liquid convection cells, the appropriate step sizes are typically further reduced due to 
the degradation of Newton’s iteration resulting from primary variable switching. The parameters 
associated with the saturation variable become more relevant and a further oscillation in selected 
step size is likely unless the target change parameters are further reduced. As the steady state is 
approached in the two-phase convection regime, an oscillation in step size is almost unavoidable 
under this strategy. Small target change parameters admit large step sizes as the steady state is 
approached; however, a number of mesh cells are close to the bubble temperature, and for these 
cells, primary variable switching can occur at each Newton iteration, preventing convergence 
unless the step size is small enough. 

Rather than attempt to develop adaptive algorithms for controlling the time step size selection 
parameters, we elected to implement a technique for monitoring the calculation and modifying 
these parameters appropriately for the current state of the solution. The technique involves two 
files for the executing programme: the monitoring file and the current parameters file. The 
executing programme writes details of each Newton iteration in the monitoring file, which we can 
review to  check the progress of the computation using the current parameter values. If we wish to 
change the current parameters, we first lock the executing programme out from reading the 
current parameters file, change the parameter values with a text editor and then unlock the access 
by the executing programme. On the executing programme side, immediately prior to computing 
a provisional time step as described above, the programme determines whether it is locked out 

k L  
7*10° lb 13 

time - years 

Figure 16. Time step size profile as a function of absolute time 
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from reading the current parameters file. i f  it is not, then it reads their values in (which may or 
may not have been modified) and uses them to compute the provisional time step; if it is locked 
out, it uses the existing internal parameter values. 

This technique allows the executing programme to run for long periods of time unattended but 
for a user to modify the parameters at will. A third file, called a lockfile, can be used to provide the 
locking/unlocking mechanism in a manner that conforms to the FORTRAN 77 standard. To lock 
the programme we create the lockfile (which may be empty) and to unlock it we delete the lockfile. 
The programme issues an INQUIRE command to determine if the lockfile is present in the file 
directory. If it is present, then the programme knows it is locked out of the current parameters file. 

The time step profiles shown in Figures 15 and 16 were obtained for Tbot = 150 "C using this 
monitoring parameter-modifying technique. The sudden drops in the step size at about steps 50 
and 100 are due to decreases in the temperature target change parameter at those stages. The 
inefficient oscillation in the time step size at  the end of the run is clearly in evidence. The 
programme was simply left to run at that stage. 
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Figure 17. Heat transfer characteristics 
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4.2. Heat transfer characteristics 

Using the basic, dimensioned parameters of this study, we can observe the heat transfer 
characteristics for this model in Figure 17, where the bottom temperature is plotted against the 
steady state heat transfer rate Q( Tbot) as defined in Section 3. In this plot, four values of Tbot have 
been used in each of the conduction regimes (70-85 "C) and five values in each of the single-phase 
convection regimes (90- 120 "C) and the two-phase convection regime (130- 150 "C). 

The well-known role of convection in enhancing heat transfer in the single-phase convection 
regime, as reviewed in Section 1.1 and the referenced literature, is evident in Figure 17. 

In the two-phase convection regime, two new effects are encountered which work counter to 
each other. Firstly, the phase change inhibits the effectiveness of the convection cells for heat 
transfer in the liquid phase by capping the temperature at Tbub and disrupting the flow pattern of 
the cell. On the other hand, the partial heat pipe that forms in the two-phase zones enhances the 
heat transfer. It is not clear from Figure 17 which of these effects dominates; the heat transfer rate 
rises fairly sharply up to 145 "C and then appears to level off somewhat, which coincides with a 
change in steady state solution structure from three convection cells to four. 

At higher bottom heating a vapour layer forms at the lower boundary. While this is a very 
interesting phenomenon, we feel that the isothermal bottom model is inappropriate for its study, 
because the solution behaviour becomes very temperature-sensitive as Tho[ approaches Tbub. It 
seems to us that a constant-heat-flux lower boundary condition would be more suited to the 
study of vapour formation at the bottom of a heated bed. 
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APPENDIX I 

This appendix gives values of the parameters and the correlations used for various physical 
properties of the extended model. As in Section 2, the following subscript associations are 
foliowed: w, water; a, air; R, rock; 1, liquid phase; g, gas phase; s, reference standard. 

Pressure 

P (kPa). 

M ,  = M,,[1 +a,( P -  P,) -DW( T -  q)] (mole mP3), 

Molar densities 

M,,= 5.55 x lo4 mole mP3, a,=4.3 x low6 kPa-', p,=2.5 x 10-4 K-1, 

T = 273 K, P, = 100 kPa, Mg=P/RT (mole m-3), 

R=8.314 x kPa m3 mole-' K-I .  

Mass density 
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Equilibrium ratios 

Ya = Zaxa , ~ , = Z , X , ,  2, = 1 x 109/(7*6P~*),  

where u* is linearly interpolated from Table 11, 

Z ,  = C0.8777 x lo-'( 7'- 243)4'76]/P. 

Enthalpies 

hl= C,( T -  z)X, + C,( T -  z)Xa (J  mole- ' ), 
C,=754  Jmole-' K - '  , C,=29.2 Jmole-' K-' , Ts=273 K, 

h,,=C,(T- T) ( J  mole-'), H g w =  C,(T- TS)+ hlat (J mole-'), 

4.814 x 103(T,- T)0'38, T <  K ( J  mole-'), 
T >  K ,  h a t  = 

Internal energies 

U ,=h , - (Px  103)/M, (J mole-'), U , = h , - ( P x  103)/M, (Jmole-I). 

Heat capacity of rock 

URMR=2-35 x lo6 J m - 3  K-'. 

Viscosities 

pl=10-9/[12-l+2.88(T-K)+7-78 x 1 0 - 4 ( T - K ) 2 J  (kPaday), 

p,= 10- '3~1~574+0~0044(  T -  z)] (kPa day). 

Gas phase diflisioityl' 

D,=D:4S,(  T/273)''334/(P/100). 

Permeabilities 

Absolute permeability K = m'. The relative permeabilities in the unsaturated states are 
obtained by linear interpolation in Table 111. 

Porosity 
4 = 0.4. 

Table 11. Parameter a* for 
computing 2, 

~ 

273 30.5 
293 19.8 
323 13.9 
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Table 111. Unsaturated zone relative permeabilities 
~ ~~~ 

s1 K r w  Kr, 

0.0 0.0 1.6 
0.15 0.0 1 .o 
0.2 0~0002 083 
0.4 0.02 035 
0 6  0.148 0104 
08 0,447 0013 
0.9 068 0001 
0.95 0.83 00002 
1 .o 1 .o 00 

Effective heat conductivity 

AH=(l-4)Ar+4SLAw, Ar=7.Ox lO4JmV3K-’  day-’, 

Gravitational acceleration 

g=9.8066 m s - ~ .  

APPENDIX I1 

A,= 5.35 x lo4 J m-3 K-’ day-’ 

In the introduction to Section + an explanation is presentei. for why we feel the Rayleigh number 
is an inappropriate basic parameter for this study involving a fluid that is an evaporating two- 
phase liquid. However, to help facilitate comparisons with other work, particularly for the liquid 
phase convection regime, we present the following derivation. The Rayleigh number for a 
horizontal liquid-saturated layer (S, = 1) is defined to be 

In addition to the symbols given in Appendix I, this formula requires b (liquid-saturated layer 
thickness)=37 m, v (kinematic viscosi.ty of water)= m2 s-’  and AH=O*7624 J K - ’  , - I s - ’  

(repeated for S, = 1 in units required for Ra). Evaluation of Ra for the parameter values given here 
and in Appendix I results in 

Ra = 0-5 ( Tbot - Tlop). 
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